当前位置: 首页 > news >正文

佛山做外贸网站的公司吗百度网盘电脑网页版

佛山做外贸网站的公司吗,百度网盘电脑网页版,wordpress komiles,云南网站建设的价值一、背景 AlexNet是在2012年由Alex Krizhevsky等人提出的,该网络在2012年的ImageNet大赛上夺得了冠军,并且错误率比第二名高了很多。Alexnet共有8层结构,前5层为卷积层,后三层为全连接层。 论文地址:ImageNet Classif…

 一、背景

AlexNet是在2012年由Alex Krizhevsky等人提出的,该网络在2012年的ImageNet大赛上夺得了冠军,并且错误率比第二名高了很多。Alexnet共有8层结构,前5层为卷积层,后三层为全连接层。
论文地址:ImageNet Classification with Deep Convolutional Neural Networks

 二、创新点

1、使用大型深度卷积神经网络

      作者使用了一个大型深度卷积神经网络,在ImageNet数据集上取得了非常好的结果。说明大型网络对模型的效果影响比较大,这也是为什么现在大家都在做大模型的原因。

2、ReLU激活函数

      该论文推广了使用整流线型单元(ReLC)激活函数,这有助于训练更深的网络,而不会出现梯度消失的问题。

3、局部响应一体化(LRN)的使用

4、数据增强

      为了减少过拟合,作者采用数据增强的方法。通过对训练图像进行平移、翻转等操作来扩充训练集,从而增强了训练样本的多样性。

5、Dropout技术

      为了进一步减少过拟合,作者采用了dropout技术。在训练过程中,以一定概率将隐藏层神经元的输出置为零。

      可以看出,这篇文章发表在2012年,已经是很久以前,但是这篇文章用到的Relu函数,Dropout技术到目前还是广泛使用的。

三、AlexNet使用PyTorch框架实现

from torch import nnclass AlexNet(nn.Module):def __init__(self,class_num):super(AlexNet,self).__init__()self.class_num = class_num# input(N,3,224,224)self.net = nn.Sequential(nn.Conv2d(in_channels=3,out_channels=96,kernel_size=11,stride=4,padding_mode='zeros'),nn.ReLU(inplace=True),nn.LocalResponseNorm(size=5,alpha=1e-4,beta=0.75,k=2),nn.MaxPool2d(kernel_size=3,stride=2),nn.Conv2d(in_channels=96,out_channels=256,kernel_size=5,stride=1,padding_mode='zeros'),nn.ReLU(inplace=True),nn.LocalResponseNorm(size=5,alpha=1e-4,beta=0.75,k=2),nn.MaxPool2d(kernel_size=3,stride=2),nn.Conv2d(in_channels=256, out_channels=384, kernel_size=3, stride=1, padding_mode='zeros'),nn.ReLU(inplace=True),nn.Conv2d(in_channels=384, out_channels=384, kernel_size=3, stride=1, padding_mode='zeros'),nn.ReLU(inplace=True),nn.Conv2d(in_channels=384, out_channels=384, kernel_size=3, stride=1, padding_mode='zeros'),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=1,stride=2))self.fully_connected=nn.Sequential(nn.Linear(in_features=256*6*6,out_features=4096),nn.ReLU(),nn.Dropout(p=0.5),nn.Linear(in_features=4096,out_features=4096),nn.ReLU(),nn.Dropout(p=0.5),nn.Linear(in_features=4096,out_features=self.class_num))self.init_bias()def init_bias(self):for layer in self.net:if isinstance(layer,nn.Conv2d):nn.init.normal_(layer.weight,mean=0,std=0.01)nn.init.constant_(layer.bias,0)nn.init.constant_(self.net[4].bias,1)nn.init.constant_(self.net[10].bias,1)nn.init.constant_(self.net[12].bias,1)nn.init.constant_(self.fully_connected[0].bias,1)nn.init.constant_(self.fully_connected[3].bias,1)def forward(self,x):x = self.net(x)x = x.view(-1,256*6*6)x = self.fully_connected(x)return x

四、AlexNet使用keras框架实现

from keras.models import Sequential
from keras.layers import Conv2D, AveragePooling2D, Flatten, Dense,Activation,MaxPool2D, BatchNormalization, Dropout
from keras.regularizers import l2
# 实例化一个空的顺序模型
model = Sequential(name="Alexnet")
# 1st layer (conv + pool + batchnorm)
model.add(Conv2D(filters= 96, kernel_size= (11,11), strides=(4,4), padding='valid', kernel_regularizer=l2(0.0005),
input_shape = (227,227,3)))
model.add(Activation('relu'))  #<---- activation function can be added on its own layer or within the Conv2D function
model.add(MaxPool2D(pool_size=(3,3), strides= (2,2), padding='valid'))
model.add(BatchNormalization())# 2nd layer (conv + pool + batchnorm)
model.add(Conv2D(filters=256, kernel_size=(5,5), strides=(1,1), padding='same', kernel_regularizer=l2(0.0005)))
model.add(Activation('relu'))
model.add(MaxPool2D(pool_size=(3,3), strides=(2,2), padding='valid'))
model.add(BatchNormalization())# layer 3 (conv + batchnorm)      <--- note that the authors did not add a POOL layer here
model.add(Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), padding='same', kernel_regularizer=l2(0.0005)))
model.add(Activation('relu'))
model.add(BatchNormalization())# layer 4 (conv + batchnorm)      <--- similar to layer 3
model.add(Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), padding='same', kernel_regularizer=l2(0.0005)))
model.add(Activation('relu'))
model.add(BatchNormalization())# layer 5 (conv + batchnorm)  
model.add(Conv2D(filters=256, kernel_size=(3,3), strides=(1,1), padding='same', kernel_regularizer=l2(0.0005)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(3,3), strides=(2,2), padding='valid'))# 平铺 CNN 输出,为其提供完全连接的层
model.add(Flatten())# layer 6 (Dense layer + dropout)  
model.add(Dense(units = 4096, activation = 'relu'))
model.add(Dropout(0.5))# layer 7 (Dense layers) 
model.add(Dense(units = 4096, activation = 'relu'))
model.add(Dropout(0.5))# layer 8 (softmax output layer) 
model.add(Dense(units = 1000, activation = 'softmax'))# 打印模型摘要
model.summary()

使用 plot_model 可视化网络

安装
conda install graphviz
conda install pydotplus

from keras.utils import plot_modelplot_model(model, to_file="images/resnet50.png", show_shapes=True)

http://www.bjxfkj.com.cn/article/101462.html

相关文章:

  • 企业网站建设技术最新热点新闻
  • wordpress翠竹林合肥网站seo推广
  • 免费的网站搜索引擎优化是指什么
  • 惠阳网站建设公司广告媒体资源平台
  • 今天郑州最新新闻seo整站优化推广
  • wordpress手机边栏百度seo自然优化
  • wordpress x themeseo关键词优化的技巧
  • 选择常州网站建设公司网站可以自己建立吗
  • 90后做网站月入万元兰州网站seo服务
  • 手机网站前端开发布局技巧深圳做网站的公司
  • wordpress 初始化 数据库信息流优化师是干什么的
  • 家装设计网站怎么做营销型网站建设易网拓
  • 佛山网站建设企业报价竞价推广出价多少合适
  • 做愛的视频网站网络营销事件
  • 网站怎么做外链知乎网站推广一般多少钱
  • 湛江做网站seo的app推广一手单平台
  • 小型手机网站建设多少钱营销网站模板
  • 免费人体做爰网站百度下载应用
  • wordpress邮箱汉化插件下载关键词优化举例
  • 深圳网站建 1设骏域网站建设小程序推广引流
  • 有赞做网站百度首页网站推广多少钱一年
  • 广东省自然资源厅邮箱免费的关键词优化工具
  • 兰州网站制作培训班sem推广和seo的区别
  • 公司网站建设哪儿济南兴田德润实惠吗如何对产品进行推广
  • 中国建设银行用e路这么进网站网站在线制作
  • 湛江优化网站排名营销网站建设门户
  • 电子商务网站面临的安全隐患seo网站优化工具大全
  • 预约小程序模板seo实战培训
  • 成都网站运营公司网络营销策略有哪五种
  • 0基础学习网站建设上海有什么seo公司