当前位置: 首页 > news >正文

沈阳市铁西区建设局网站seo网站推广主要目的不包括

沈阳市铁西区建设局网站,seo网站推广主要目的不包括,wordpress for github,企业邮箱注册方法583. 两个字符串的删除操作 动规五部曲 1、确定dp数组(dp table)以及下标的含义 dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。 2、确定递推…

583. 两个字符串的删除操作

动规五部曲

1、确定dp数组(dp table)以及下标的含义

dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。

2、确定递推公式

当word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];

当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况:

情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1

情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1

情况三:同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2

当word1[i - 1] 与 word2[j - 1]不相同的时候,递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});

因为 dp[i][j - 1] + 1 = dp[i - 1][j - 1] + 2,所以递推公式可简化为:dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);

当 同时删word1[i - 1]和word2[j - 1],dp[i][j-1] 本来就不考虑 word2[j - 1]了,那么在删 word1[i - 1],就达到了两个元素都删除的效果,即 dp[i][j-1] + 1

3、dp数组如何初始化

从递推公式中,可以看出来,dp[i][0] 和 dp[0][j]是一定要初始化的。

dp[i][0]:word2为空字符串,以i-1为结尾的字符串word1要删除多少个元素,才能和word2相同呢,很明显dp[i][0] = i。

4、确定遍历顺序

从递推公式 dp[i][j] = min(dp[i - 1][j - 1] + 2, min(dp[i - 1][j], dp[i][j - 1]) + 1); 和dp[i][j] = dp[i - 1][j - 1]可以看出dp[i][j]都是根据左上方、正上方、正左方推出来的。

5、举例推导dp数组

以word1:"sea",word2:"eat"为例,推导dp数组状态图如下:

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1));for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;for (int i = 1; i <= word1.size(); i++) {for (int j = 1; j <= word2.size(); j++) {if (word1[i - 1] == word2[j - 1]) {dp[i][j] = dp[i - 1][j - 1];} else {dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);}}}return dp[word1.size()][word2.size()];}
};

思路二

只要求出两个字符串的最长公共子序列长度即可,那么除了最长公共子序列之外的字符都是必须删除的,最后用两个字符串的总长度减去两个最长公共子序列的长度就是删除的最少步数。

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1, 0));for (int i = 1; i <= word1.size(); i++) {for (int j = 1; j <= word2.size(); j++) {if (word1[i - 1] == word2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;} else {dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);}}}return word1.size() + word2.size() - dp[word1.size()][word2.size()] * 2;}
};

72. 编辑距离

动规五部曲

1、确定dp数组(dp table)以及下标的含义

dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]

2、确定递推公式

在确定递推公式的时候,首先要考虑清楚编辑的几种操作,整理如下:

if (word1[i - 1] == word2[j - 1])不操作
if (word1[i - 1] != word2[j - 1])增删换

if (word1[i - 1] == word2[j - 1]) 那么说明不用任何编辑,dp[i][j] 就应该是 dp[i - 1][j - 1],即dp[i][j] = dp[i - 1][j - 1];

if (word1[i - 1] != word2[j - 1])

  • 操作一:word1删除一个元素,那么就是以下标i - 2为结尾的word1 与 j-1为结尾的word2的最近编辑距离 再加上一个操作。

dp[i][j] = dp[i - 1][j] + 1;

  • 操作二:word2删除一个元素,那么就是以下标i - 1为结尾的word1 与 j-2为结尾的word2的最近编辑距离 再加上一个操作。

dp[i][j] = dp[i][j - 1] + 1;

word2添加一个元素,相当于word1删除一个元素,例如 word1 = "ad" ,word2 = "a"word1删除元素'd'word2添加一个元素'd',变成word1="a", word2="ad"

操作三:替换元素,word1替换word1[i - 1],使其与word2[j - 1]相同,此时不用增删加元素。

if (word1[i - 1] != word2[j - 1]) 时取最小的,即:dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;

3、dp数组如何初始化

dp[i][0] :以下标i-1为结尾的字符串word1,和空字符串word2,最近编辑距离为dp[i][0]。

那么dp[i][0]就应该是i,对word1里的元素全部做删除操作,即:dp[i][0] = i;

同理dp[0][j] = j;

4、确定遍历顺序

从如下四个递推公式:

  • dp[i][j] = dp[i - 1][j - 1]
  • dp[i][j] = dp[i - 1][j - 1] + 1
  • dp[i][j] = dp[i][j - 1] + 1
  • dp[i][j] = dp[i - 1][j] + 1

可以看出dp[i][j]是依赖左方,上方和左上方元素的,如图:

所以在dp矩阵中一定是从左到右从上到下去遍历。

 5、举例推导dp数组

以示例1为例,输入:word1 = "horse", word2 = "ros"为例,dp矩阵状态图如下:

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1));for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;for (int i = 1; i <= word1.size(); i++) {for (int j = 1; j <= word2.size(); j++) {if (word1[i - 1] == word2[j - 1]) {dp[i][j] = dp[i - 1][j - 1];} else {dp[i][j] = min(dp[i - 1][j], min(dp[i][j - 1], dp[i - 1][j - 1])) + 1;}}}return dp[word1.size()][word2.size()];}
};

 

编辑距离总结

编辑距离从判断子序列->判断子序列 ->不同的子序列 ->两个字符串的删除操作->编辑距离

以上四个题都是从最初子序列开始,在原本一个子序列的基础上,变成了二维,通过观察每次解题代码可以发现,其实各题在解题思路上都几乎类似,难点在于递推公式的推导与初始化,递推公式的推导要在理解各题要求的同时,思考该如何得出当前状态,时刻谨记dp数组的定义有利于递推公式推导

http://www.bjxfkj.com.cn/article/102689.html

相关文章:

  • 怎么部署自己的网站湘潭网站定制
  • 网站建设难做吗网络营销的核心是什么
  • 做情侣网站网络营销策略包括哪些
  • 企业网站源码带支付上海专业做网站
  • 关于做网站常见的问题北京口碑最好的it培训机构
  • 湘潭seo优化价格天津抖音seo
  • 建设网站的安全性介绍阿里云com域名注册
  • 网站建设公司利润怎么样新乡网络推广外包
  • 怎么用PS做珠宝网站百度seo搜索营销新视角
  • 成品网站软件大全下载营销网站建设哪家好
  • 制作网站网页设计市场推广策略 包括哪些
  • 直播秀场网站开发企业邮箱如何申请注册
  • 自己做的网站可以有多个前端吗凡科网免费建站
  • 备案网站用户名是什么seo常用优化技巧
  • 一条龙做网站做电商一个月能挣多少钱
  • 番禺外贸网站建设网络营销活动策划方案
  • 英文域名在哪个网站查询武汉seo推广
  • 个人建网站一般多少钱线上平台推广方式
  • 北京网站建设招聘seo是什么的缩写
  • 青岛哪里有做网站的怎么自己创建一个网页
  • 在哪里找人做公司网站企业网络
  • 做译员的网站aso优化平台有哪些
  • 龙江手机网站建设常用的关键词有哪些
  • 怎样用dw做网站导航条搜索引擎优化是什么意思
  • 永辉企业微信app下载安装优化网站哪个好
  • wordpress 获取logo中山seo排名
  • 南京网站建设流程班级优化大师官方免费下载
  • ecs怎么做网站杭州seo推广排名稳定
  • 河西网站建设优化seo网站推广策略有哪些
  • 在网站上发消息做宣传自学seo大概需要多久