当前位置: 首页 > news >正文

手机微网站二级菜单怎么做北京百度公司地址在哪里

手机微网站二级菜单怎么做,北京百度公司地址在哪里,网络营销的经济gdp是什么,科普新疆app下载多维时序 | Matlab实现VMD-CNN-LSTM变分模态分解结合卷积神经网络结合长短期记忆神经网络多变量时间序列预测 目录 多维时序 | Matlab实现VMD-CNN-LSTM变分模态分解结合卷积神经网络结合长短期记忆神经网络多变量时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介…

多维时序 | Matlab实现VMD-CNN-LSTM变分模态分解结合卷积神经网络结合长短期记忆神经网络多变量时间序列预测

目录

    • 多维时序 | Matlab实现VMD-CNN-LSTM变分模态分解结合卷积神经网络结合长短期记忆神经网络多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现VMD-CNN-LSTM变分模态分解结合卷积神经网络结合长短期记忆神经网络多变量时间序列预测;
2.运行环境为Matlab2021及以上;
3.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;
4.data为数据集,main1_VMD.m、main2_VMD_CNN_LSTM.m为主程序,运行即可,所有文件放在一个文件夹;
5.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;

VMD-CNN-LSTM,即变分模态分解(VMD)结合卷积神经网络(CNN)与长短期记忆网络(LSTM),是一种先进的时间序列预测模型,适用于多变量时间序列预测问题。下面我们将逐一分析这些组件及其组合方式如何工作。

首先,变分模态分解(VMD)是一种信号处理方法,用于将复杂信号分解为一系列具有稀疏性和频带限制的子模态分量。这有助于从原始数据中提取出具有不同频率特性的信息,为后续的机器学习模型提供更丰富的特征。

接着,卷积神经网络(CNN)是一种深度学习模型,特别适用于处理具有网格结构的数据,如图像。在时间序列预测中,CNN可以通过卷积操作提取数据的局部特征,并通过池化操作降低数据的维度,从而减少模型的计算复杂度。

长短期记忆网络(LSTM)是一种特殊的循环神经网络(RNN),擅长处理序列数据中的长期依赖关系。通过其门控机制,LSTM可以记忆过去的信息并传递给未来,这对于预测时间序列数据中的长期趋势非常有用。

将VMD、CNN和LSTM三者结合,可以构建一个强大的多变量时间序列预测模型。具体来说,VMD首先对原始数据进行分解,得到一系列子模态分量;然后,CNN对这些子模态分量进行特征提取;最后,LSTM利用这些特征进行时间序列预测。这种组合方式充分利用了三种方法的优点,使得模型在处理复杂时间序列问题时具有更高的预测精度和更强的泛化能力。

程序设计

  • 完整程序和数据获取方式资源处下载Matlab实现VMD-CNN-LSTM变分模态分解结合卷积神经网络结合长短期记忆神经网络多变量时间序列预测。
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res =xlsread('data.xlsx');%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);f_ = size(P_train, 1);                  % 输入特征维度%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);% 输入特征sequenceInputLayer([numFeatures,1,1],'name','input')   %输入层设置sequenceFoldingLayer('name','fold')         %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。% CNN特征提取convolution2dLayer([3,1],16,'Stride',[1,1],'name','conv1')  %添加卷积层,641表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长batchNormalizationLayer('name','batchnorm1')  % BN层,用于加速训练过程,防止梯度消失或梯度爆炸reluLayer('name','relu1')       % ReLU激活层,用于保持输出的非线性性及修正梯度的问题% 池化层maxPooling2dLayer([2,1],'Stride',2,'Padding','same','name','maxpool')   % 第一层池化层,包括3x3大小的池化窗口,步长为1,same填充方式% 展开层sequenceUnfoldingLayer('name','unfold')       %独立的卷积运行结束后,要将序列恢复%平滑层flattenLayer('name','flatten')lstmLayer(25,'Outputmode','last','name','hidden1') dropoutLayer(0.2,'name','dropout_1')        % Dropout层,以概率为0.2丢弃输入fullyConnectedLayer(1,'name','fullconnect')   % 全连接层设置(影响输出维度)(cell层出来的输出层) %

参考资料

[1] https://blog.csdn.net/kjm13182345320/category_11799242.html?spm=1001.2014.3001.5482
[2] https://blog.csdn.net/kjm13182345320/article/details/124571691

http://www.bjxfkj.com.cn/article/104577.html

相关文章:

  • 大城网站制作谷歌google地图
  • 乐温州网站建设google 网站推广
  • 韩语网站建设网络推广文案策划
  • 招聘h5是什么意思关键词优化排名的步骤
  • 马鞍山做网站的公司78优秀的营销案例
  • 网站怎么做301重定向百度站长平台登录
  • 抖音服务商平台seo根据什么具体优化
  • 东莞做网站 南城信科seo 首页
  • 我做的网站不知道网站怎么办营销培训讲师
  • 惠州网站制作询问薇百度风云榜排行榜
  • 免费域名网站查询蜘蛛搜索引擎
  • 雄安免费网站建设哪家好抖音推广公司
  • 三合一网站建设多少钱建网站软件工具
  • 北京科技网站开发seo建站工具
  • 做好评做销量的网站google seo优化
  • 集约化政府门户网站建设的优点二级分销小程序
  • 济源网站制作品牌推广软文案例
  • 永康做网站口碑营销的缺点
  • 橙子建站客服电话八种营销模式
  • 免费在线观看网址入口搜索优化的培训免费咨询
  • 怎么做幼儿园网站介绍ppt怎么开发一款app软件
  • 做网站文章要一篇一篇的写吗seo免费浏览网站
  • 免费的网站后台知乎小说推广对接平台
  • 手机网站设计图青岛关键词网站排名
  • 房产手机网站开发网络营销推广流程
  • 帮别人做网站制作seo 推广服务
  • 东阳网站优化免费的舆情网站app
  • 独立网站做外贸报价郑州疫情最新情况
  • 比优化更好的词是优化大师win10能用吗
  • 天津模板建站定制网站免费下载百度seo