当前位置: 首页 > news >正文

soho外贸网站建设自己搭建网站需要多少钱

soho外贸网站建设,自己搭建网站需要多少钱,网络公司是做什么的?,网页升级紧急通知每天正常更新文章目录 1. 混淆矩阵2. Precision(精准率)3. Recall(召回率)4. F1-score5. ROC曲线和AUC指标5.1 ROC 曲线5.2 绘制 ROC 曲线5.3 AUC 值6. API介绍6.1 **分类评估报告api**6.2 **AUC计算API**练习-电信客户流失预测1. 数据集介绍2. 处理流程3. 案例实现4. 小结1. 混淆矩阵 …

文章目录

    • 1. 混淆矩阵
    • 2. Precision(精准率)
    • 3. Recall(召回率)
    • 4. F1-score
    • 5. ROC曲线和AUC指标
      • 5.1 ROC 曲线
      • 5.2 绘制 ROC 曲线
      • 5.3 AUC 值
    • 6. API介绍
      • 6.1 **分类评估报告api**
      • 6.2 **AUC计算API**
  • 练习-电信客户流失预测
    • 1. 数据集介绍
    • 2. 处理流程
    • 3. 案例实现
    • 4. 小结

1. 混淆矩阵

在这里插入图片描述

混淆矩阵作用就是看一看在测试集样本集中:

  1. 真实值是 正例 的样本中,被分类为 正例 的样本数量有多少,这部分样本叫做真正例(TP,True Positive)
  2. 真实值是 正例 的样本中,被分类为 假例 的样本数量有多少,这部分样本叫做伪反例(FN,False Negative)
  3. 真实值是 假例 的样本中,被分类为 正例 的样本数量有多少,这部分样本叫做伪正例(FP,False Positive)
  4. 真实值是 假例 的样本中,被分类为 假例 的样本数量有多少,这部分样本叫做真反例(TN,True Negative)

True Positive :表示样本真实的类别
Positive :表示样本被预测为的类别

2. Precision(精准率)

精准率也叫做查准率,指的是对正例样本的预测准确率。即,真正例(预测对的正例)占预测结果中所有正例的比例。

在这里插入图片描述

3. Recall(召回率)

召回率也叫做查全率,指的是预测为真正例样本占所有真实正例样本的比重。即,真正例(预测对的正例)占真实结果中所有正例的比例。
在这里插入图片描述

例子:

样本集中有 6 个恶性肿瘤样本,4 个良性肿瘤样本,我们假设恶性肿瘤为正例,则:

模型 A: 预测对了 3 个恶性肿瘤样本,4 个良性肿瘤样本

  1. 真正例 TP 为:3
  2. 伪反例 FN 为:3
  3. 假正例 FP 为:0
  4. 真反例 TN:4
  5. 精准率:3/(3+0) = 100%
  6. 召回率:3/(3+3)=50%

4. F1-score

如果我们对模型的精度、召回率都有要求,希望知道模型在这两个评估方向的综合预测能力如何?则可以使用 F1-score 指标。

在这里插入图片描述

样本集中有 6 个恶性肿瘤样本,4 个良性肿瘤样本,我们假设恶性肿瘤为正例,则:

模型 A: 预测对了 3 个恶性肿瘤样本,4 个良性肿瘤样本

  1. 真正例 TP 为:3
  2. 伪反例 FN 为:3
  3. 假正例 FP 为:0
  4. 真反例 TN:4
  5. 精准率:3/(3+0) = 100%
  6. 召回率:3/(3+3)=50%
  7. F1-score:(2*3)/(2*3+3+0)=67%

模型 B: 预测对了 6 个恶性肿瘤样本,1个良性肿瘤样本

  1. 真正例 TP 为:6
  2. 伪反例 FN 为:0
  3. 假正例 FP 为:3
  4. 真反例 TN:1
  5. 精准率:6/(6+3) = 67%
  6. 召回率:6/(6+0)= 100%
  7. F1-score:(2*6)/(2*6+0+3)=80%

5. ROC曲线和AUC指标

5.1 ROC 曲线

ROC 曲线:我们分别考虑正负样本的情况:

  1. 正样本中被预测为正样本的概率,即:TPR (True Positive Rate)
  2. 负样本中被预测为正样本的概率,即:FPR (False Positive Rate)

在这里插入图片描述

ROC 曲线图像中,4 个特殊点的含义:

  1. (0, 0) 表示所有的正样本都预测为错误,所有的负样本都预测正确
  2. (1, 0) 表示所有的正样本都预测错误,所有的负样本都预测错误
  3. (1, 1) 表示所有的正样本都预测正确,所有的负样本都预测错误
  4. (0, 1) 表示所有的正样本都预测正确,所有的负样本都预测正确

5.2 绘制 ROC 曲线

假设:在网页某个位置有一个广告图片或者文字,该广告共被展示了 6 次,有 2 次被浏览者点击了。每次点击的概率如下:

样本是否被点击预测点击概率
110.9
310.8
200.7
400.6
500.5
600.4

绘制 ROC 曲线:

阈值:0.9

  1. 原本为正例的 1、3 号的样本中 3 号样本被分类错误,则 TPR = 1/2 = 0.5
  2. 原本为负例的 2、4、5、6 号样本没有一个被分为正例,则 FPR = 0

阈值:0.8

  1. 原本为正例的 1、3 号样本被分类正确,则 TPR = 2/2 = 1
  2. 原本为负例的 2、4、5、6 号样本没有一个被分为正例,则 FPR = 0

阈值:0.7

  1. 原本为正例的 1、3 号样本被分类正确,则 TPR = 2/2 = 1
  2. 原本为负类的 2、4、5、6 号样本中 2 号样本被分类错误,则 FPR = 1/4 = 0.25

阈值:0.6

http://www.bjxfkj.com.cn/article/108927.html

相关文章:

  • 帝国建站程序厦门电商网站
  • 易语言可以做网站管理系统吗wordpress 插件钩子
  • 15个国内互动网站设计欣赏缪斯设计公司官网
  • 网站建设的经费预算报告网站建设运营协议书
  • 建筑人才网官方网站评职称品牌设计策划公司
  • 新手seo网站做什么类型好南京广告公司有哪些公司
  • 品划网络做营销型网站贴吧广告投放
  • 安庆商务网站建设化隆县公司网站建设
  • 建设项目管理公司网站东营建设信息网最新招聘
  • 网站后台的意义go语言网站开发教程
  • 手机h5免费模板网站模板下载电白网站开发公司
  • 那些公司需要网站开发工程师个人网站备案后内容可以改么
  • 外国网站备案镇江教育平台网站建设
  • 聊城做手机网站推广网站系统建站
  • 模拟网站建设软件有哪些格兰仕网站开发方案
  • 哪个网站可以帮忙做简历logo制作步骤
  • 太原网站建设培训室内设计培训教程
  • 买房网站怎么做电商网站开发项目计划书
  • 网站建设茶店网站长网站大全
  • 上海做网站seo网站备案加链接代码
  • 下载好的网站模板怎么用做网站要多少钱 知乎
  • 怎么建一个自己的网站seo整站优化
  • 抢购网站源码商务网站建设步骤有几个
  • 商城网站平台怎么做的cpm广告联盟平台
  • 中国商城网站建设腾讯企点下载官网
  • wordpress 搜索框插件网站设计网站开发优化
  • ftp怎么连接网站空间可以看封禁网站的浏览器
  • 南昌高端网站开发费用表电脑网站微信支付怎么做的
  • 职业技术学院网站建设项目来凤县住房和城乡建设厅网站
  • 推广优化网站排名教程怎么开网页游戏平台