当前位置: 首页 > news >正文

怎样在百度做网站打广告南京做网站费用

怎样在百度做网站打广告,南京做网站费用,野花视频直播免费观看7,北京门户网站建设公司文章目录 前言分析数据集线性可分情况下的支持向量机原始问题凸优化包解法对偶问题凸优化包解法 数据集线性不可分情况下的线性支持向量机与软间隔最大化 前言 在支持向量机中,理论逻辑很简单:最大化最小的几何间隔。但是实际编写代码过程中有一个小点需…

文章目录

  • 前言
  • 分析
  • 数据集线性可分情况下的支持向量机
    • 原始问题凸优化包解法
    • 对偶问题凸优化包解法
  • 数据集线性不可分情况下的线性支持向量机与软间隔最大化

前言

  • 在支持向量机中,理论逻辑很简单:最大化最小的几何间隔。但是实际编写代码过程中有一个小点需要注意。总是把二分类的类别分为01,这样就导致我的目标函数跟算法描述的就不一样,所以求解结果就不正确。
  • 同时还有第二个要注意的就是凸优化包cvxpy中各种运算的表示方法,比如凸优化中常见的二次方程的表示,变量的默认形状等,要查看官方文档才能熟悉。变量的默认形状为列向量。

参考:

  • 李航:统计学习方法
  • CVXPY

分析

支持向量机算法中,我们的训练数据除了是两种类别以外,类别的编号也有要求,分别是1-1,只有这样,我们才能求每个样本所对应的函数间隔 D = y i ( w x i + b ) D=y_i(wx_i+b) D=yi(wxi+b)和几何间隔 D = y i w x i + b ∥ w ∥ 2 D=y_i\frac{wx_i+b}{\|w\|_2} D=yiw2wxi+b,在这种类别标签的情况下,预测值 w x i + b wx_i+b wxi+b与真实值 y i y_i yi之间的乘积才有意义。
预测与真实相同,乘积才会是大于0的;预测与真实相反,乘积就是小于0的。只有这样后面的目标函数最大化几何间隔才有意义。
重新表述一下可分数据集上支持向量机的目标函数和约束条件:
max λ s.t. y i w x i + b ∥ w ∥ 2 ≥ λ \begin{align*} &\textbf{max}&\lambda \\ &\textbf{s.t.} &y_i\frac{wx_i+b}{\|w\|_2}\ge\lambda \end{align*} maxs.t.λyiw2wxi+bλ

如果我们使用类别标签为01,那么当错误分类时,几何间隔为0,无法指导参数修改。所以必须要使用1-1

数据集线性可分情况下的支持向量机

此时有两种求法,一种是用原始算法,直接用cvxpy函数包求解原始的这个凸优化问题,并把问题变为下述形式:
max t ∥ w ∥ 2 s.t. y i ( w x i + b ) ≥ t \begin{align*} &\textbf{max}&\frac{t}{\|w\|_2} \\ &\textbf{s.t.} &y_i{(wx_i+b)}\ge t \end{align*} maxs.t.w2tyi(wxi+b)t

由于通过同比例放大w,b可以实现条件中左边的乘积大小的任意变换,所以我们修改t 1 1 1。上述凸优化问题就变为:
min ∥ w ∥ 2 s.t. y i ( w x i + b ) ≥ 1 \begin{align*} &\textbf{min}&{\|w\|_2} \\ &\textbf{s.t.} &y_i{(wx_i+b)}\ge 1 \end{align*} mins.t.w2yi(wxi+b)1

第二种方法就是将原始问题使用拉格朗日乘子法变换为对偶问题,将加入条件和拉格朗日乘子的拉格朗日函数进行求导,并将求导得到的关系式带入拉格朗日函数,这样就可以得到对偶问题。

原始问题凸优化包解法

import numpy as np
import cvxpy as cp
#生成符合要求的样本数据
np.random.seed(3)
train_x=np.random.randn(2,2)
weight_x=np.random.randn(2)
bias_x=np.random.randn(1)
train_y=np.where(train_x@weight_x+bias_x<0,-1,1).reshape(2,-1)
print(train_x,train_y)
#求解对偶凸优化问题
w=cp.Variable(2)
b=cp.Variable(1)
obj=cp.Minimize(1/2*cp.sum_squares(w))
cons=[train_y[0]*(train_x@w+b)[0]>=1,train_y[1]*(train_x@w+b)[1]>=1]
prob=cp.Problem(obj,cons)
result=prob.solve()
#输出拉格朗日乘子的和最优化的目标函数值以及权重w
print(f'w.value,result,b.value:{w.value,result,b.value}')

结果如下:

[[ 1.78862847  0.43650985][ 0.09649747 -1.8634927 ]] [[-1][ 1]]
w.value,result,b.value:(array([-0.41507783, -0.56418804]), 0.24529887505030906, array([-0.01130633]))

对偶问题凸优化包解法

本例子中我们使用了小规模的数据,只有两个样本,所以这两个样本肯定都是支持向量,也就是对应的拉格朗日乘子都不为0,对于大规模样本数据的情况,如果不在分界面上,那么对应的拉格朗日乘子为0,也就不是支持向量。拉格朗日乘子不为0的肯定就是支持向量。

import numpy as np
import cvxpy as cp
#生成符合要求的样本数据
np.random.seed(3)
train_x=np.random.randn(2,2)
weight_x=np.random.randn(2)
bias_x=np.random.randn(1)
train_y=np.where(train_x@weight_x+bias_x<0,-1,1).reshape(2,-1)
print(train_x,train_y)
#求解对偶凸优化问题
alpha=cp.Variable(2)
obj=cp.Minimize(1/2*cp.quad_form(alpha,(train_x@train_x.T)*(train_y@train_y.T))-cp.sum(alpha))
cons=[alpha>=0,train_y.T@alpha>=0,train_y.T@alpha<=0]
prob=cp.Problem(obj,cons)
result=prob.solve()
#输出拉格朗日乘子的和最优化的目标函数值以及权重w
print(f'alpha.value,result,w:{alpha.value,result,np.array(alpha.value.reshape(2,-1)*train_y*train_x).sum(axis=0)}')
#检验支持向量机求出的分离面是否与这两个样本之间的连线垂直
w=np.array(alpha.value.reshape(2,-1)*train_y*train_x).sum(axis=0)
np.array(train_x[0,:]-train_x[1,:]).reshape(1,-1)@np.array([-w[1]/w[0],1]).reshape(2,-1)

结果如下:

[[ 1.78862847  0.43650985][ 0.09649747 -1.8634927 ]] [[-1][ 1]]
alpha.value,result,w:(array([0.24529888, 0.24529888]), -0.24529887505030898, array([-0.41507783, -0.56418804]))
array([[-4.4408921e-16]])

至于参数b,我们可以通过支持向量所对应的等式求出。
我们可以观察一下原始问题与对偶问题的解答是否一致。

数据集线性不可分情况下的线性支持向量机与软间隔最大化

软间隔顾名思义就是给原来的间隔留下一点宽容量,给那些不容易分正确的留一点余地。同时对于这些余地进行惩罚所得到的分割面,以上面线性可分的数据做演示。

import numpy as np
import cvxpy as cp
#生成符合要求的样本数据
np.random.seed(3)
train_x=np.random.randn(2,2)
weight_x=np.random.randn(2)
bias_x=np.random.randn(1)
train_y=np.where(train_x@weight_x+bias_x<0,-1,1).reshape(2,-1)
print(train_x,train_y)
#求解对偶凸优化问题
w=cp.Variable(2)
b=cp.Variable(1)
softgap=cp.Variable(2)
obj=cp.Minimize(1/2*cp.sum_squares(w)+100*cp.sum(softgap))
cons=[train_y[0]*(train_x@w+b)[0]>=1-softgap[0],train_y[1]*(train_x@w+b)[1]>=1-softgap[1],softgap>=0]
prob=cp.Problem(obj,cons)
result=prob.solve()
#输出拉格朗日乘子的和最优化的目标函数值以及权重w
print(f'w.value,result,b.value,softgap.value:{w.value,result,b.value,softgap.value}')

结果如下:

[[ 1.78862847  0.43650985][ 0.09649747 -1.8634927 ]] [[-1][ 1]]
w.value,result,b.value,softgap.value:(array([-0.41507783, -0.56418804]), 0.24529887505030906, array([-0.01130633]), array([-2.90746355e-22,  1.53881391e-22]))

可以看出在线性可分的的情况下软间隔不起作用。
那么我们制造一些线性不可分的数据,来测试一下。

import numpy as np
import cvxpy as cp
#生成符合要求的样本数据
np.random.seed(3)
train_x=np.array([[0,0],[1,0],[2,0]])
train_y=np.array([-1,1,-1]).reshape(3,-1)
print(train_x,train_y)
#求解对偶凸优化问题
w=cp.Variable(2)
b=cp.Variable(1)
softgap=cp.Variable(3)
obj=cp.Minimize(1/2*cp.sum_squares(w)+0.1*cp.sum(softgap))
cons=[train_y[0]*(train_x@w+b)[0]>=1-softgap[0],train_y[1]*(train_x@w+b)[1]>=1-softgap[1],train_y[2]*(train_x@w+b)[2]>=1-softgap[2],softgap>=0]
prob=cp.Problem(obj,cons)
result=prob.solve()
#输出拉格朗日乘子的和最优化的目标函数值以及权重w
print(f'w.value,result,b.value,softgap.value:{w.value,result,b.value,softgap.value}')

结果如下:

[[0 0][1 0][2 0]] [[-1][ 1][-1]]
w.value,result,b.value,softgap.value:(array([9.07653476e-18, 0.00000000e+00]), 0.2, array([-1.]), array([ 8.59013373e-23,  2.00000000e+00, -8.59013423e-23]))
http://www.bjxfkj.com.cn/article/109081.html

相关文章:

  • 网站内容优化方法有哪些wordpress分类目录表
  • wordpress cpu突然深圳网站seo关键词
  • php程序员做企业网站自己电脑做网站服务器小工具
  • 创建公司网站 优帮云广州小程序软件开发
  • 工信部网站备案时间线上推广产品
  • 星空传媒有限公司网站wordpress导航仿制
  • 网站服务器无响应是怎么回事六安钢贴吧
  • 广州网站建设比较重庆市城市建设档案馆官方网站
  • 建网站的基本流程苏州市亿韵商务信息有限公司
  • 网站轮播动态图如何做建个网站需要服务器吗
  • 设计网站平台高清图片素材网
  • 备案官方网站推广一个网站需要什么
  • 商城类网站怎么推广wordpress的采集插件
  • 公司做网站宣传怎么做化妆品 网站模板
  • seo是搜索引擎优化东莞seo排名扣费
  • 青海城乡与建设厅网站建设网站需要那几部
  • 赤城seo网站优化排名网站建设招聘需求
  • 河南网站备案今天猪最新价格
  • p2p网站建设 上海网站做好了 怎么做解析
  • 长春网站优化指导网站设计步骤ppt
  • 响应式网站都有哪些建设一个自己的网站首页
  • form e哪个网站做营销型网站建设主要教学内容
  • 贵阳做网站哪家好手机网站制作吧
  • 义乌购网站做代销怎么样工作单位怎么填
  • 快速搭建网站域名绑定设置百合网网站建设与策划
  • 美食网站模版wordpress 恶意
  • 让iis做跳转网站网站建设补充报价单
  • 适合企业做外贸的几个网站小学生一分钟新闻播报
  • 建设网站的一般步骤曲靖住房和城乡建设局网站
  • 公司建设网站请示网站建设步骤大全