当前位置: 首页 > news >正文

江苏搜索引擎优化太原网站制作优化seo公司

江苏搜索引擎优化,太原网站制作优化seo公司,如何做阿里巴巴网站,网络营销的优势译:"DOF:面向需求的图像去噪框架" -- IEEE Transactions on Industrial Informatics -- 2021 目录 一、引言 二、方法 A、需求为导向的框架 B、基于DOF的网络 三、实验 一、引言 大多数图像去噪算法的重点是最大化图像去噪质量&#xff…

译:"DOF:面向需求的图像去噪框架"

-- IEEE Transactions on Industrial Informatics -- 2021


目录

一、引言

二、方法

A、需求为导向的框架

B、基于DOF的网络

三、实验


一、引言

        大多数图像去噪算法的重点是最大化图像去噪质量,在降低参数数量和计算复杂度方面仍有相当大的空间。当面对不同的任务时,对参数个数、计算复杂度和去噪质量的要求是不同的。为了克服这一问题,本文作者提出了一种灵活的需求导向框架(DOF),通过在训练阶段选择适当的超参数,生成一个可以优先考虑参数数量计算复杂度去噪质量的可控模型。

        本文方法的结构包括一个尺度编码器,一个分流模块和一个尺度解码器

二、方法

        作者提出一个以需求为导向的框架,以实现以下三个目标:

(1)、需求导向:根据应用场景,基于DOF的去噪可以平衡上述三个性能指标。

(2)、普遍性:该框架可应用于其他基于CNN的去噪模型,通过该框架,重构模型可以减少参数数量,提高计算效率。

(3)、鲁棒性:当将所提框架应用于其他模型以降低计算复杂度和参数数量时,基于所提框架重建的去噪模型在去噪质量上应达到与原始模型相似的性能。

A、需求为导向的框架

        图像退化模型可以表示为:

其中x是干净图像,y表示噪声观测,v是加性噪声。

DOF模型通过下式估计噪声映射:

此外,为了提高计算效率和减少参数数量,DOF在尺度解码器的帮助下,将整个噪声图的估计转化为几个较小的噪声图的估计。因此,使用尺度编码器和分流模块估计每个子噪声图。

(1)、尺度编码器:第一步,尺度编码器利用步长为1的卷积层提取特征,发现有用信息和冗余信息;第二步,利用步长为2的卷积层对特征进行尺度缩减,借助训练过程减少空间冗余信息。这样,该方法以较低的计算复杂度达到了去噪的效果。如表一所示,这种方案的效果较好。

        为了使网络更可控,作者引入一个比例因子S=2^{\frac{j}{2}}来控制浅层特征的空间大小,j表示尺度编码器中的卷积层数。给定一幅尺寸为W x H,尺度因子为S的观测图像y,尺度编码器丢弃空间冗余信息,提取浅层特征:

(2)、分流模块:结构如图1 (b)所示。

它由几个简单的网络分支组成,其编号由超参数G配置。每个分支以提取的一部分浅层特征作为输入,通过几层卷积进一步提取深层特征。一般来说,网络分支可以采用不同的结构,每个分支的结构可以是任何现有去噪模型的低复杂度版本。给定大小为\frac{H}{S}\times \frac{W}{S}的浅层特征f, 分流模块首先将其划分为给定的组(f_1,f_2,...,f_G)。然后将这些浅层特征分别反馈给G个网络分支。这个过程表示为:

在每个网络分支中,引入一个容量比R来控制所发现信息的数据量。让每个分支发现的信息跨所有分支流动。如图2所示,

每个网络分支将发现的信息划分为G组。然后,它保留一组原始信息,让其他信息在每个分支之间流动。请注意,信息流操作强调信息的共享。经过信息流动操作后,重组后的信息可以表示为:

然后,每个分支网络的下一个特征提取器将重组后的信息作为输入,更新深度特征I。通过信息流动操作,一个网络分支的信息将与其他网络分支共享。因此,每个网络分支都可以利用来自不同网络分支的所有信息,尽管一个网络分支的输入只占整个信息的一小部分。最后,分流模块利用深度特征估计子噪声映射:

其中等式左边就是网络的输出,表示子噪声图。

注意这种信息流动操作不需要额外的可学习参数和浮点运算。

(3)、尺度解码器:尺度解码器的目标是生成与输入噪声图像大小相同的最终噪声图,使用大小为子噪声图来重建大小为H × W的噪声图。如图1(a)所示,尺度解码器将子噪声图的像素重新排列到噪声映射的空间维度上。给定子噪声图,通过下式重构最终的噪声图\widehat{v}

这里的E表示解码器。

注意这里所提出的尺度解码器不需要任何可学习参数。尺度解码器通过将误差反向传播到每个子噪声映射,使噪声映射的预测具有可学习性。

B、基于DOF的网络

        DOF有三个重要的超参数:比例因子S分支数量G容量比R。作者根据这三个参数的选择制定了不同的网络,分别有:parameter-oriented DONet (DONet-P),computation-oriented DONet (DONet-C), quality-oriented DONet (DONet-Q), 和 balanced DONet (DONet-B)。顾名思义,每个网络的需求是不一样的。然后优化目标如下:

三、实验

        下面是部分实验结果:

http://www.bjxfkj.com.cn/article/110480.html

相关文章:

  • 网站制作技术支持如何将网站上传到空间
  • 香水网站设计网页推广文章的步骤
  • 宁波附近的seo推广购物网站seo关键词定位
  • 兰州做网站哪家好python基础教程电子版书籍
  • 京东网站建设流程向网站服务器上传网页文件下载
  • 东莞网络推广网站邢台网站建设邢台
  • 哈尔滨网站建设维护深圳有名的品牌设计公司
  • 部门网站建设注意事项室内效果图代做网站
  • 海淀网站建设枣庄白银网站建设公司
  • 餐饮手机微网站怎么做wordpress 国外在访问
  • 房地产开发建设网站开发微信小程序商城
  • 猪八戒做网站怎么赚钱Pk10网站建设多少钱
  • vps怎么添加网站网站模板下载
  • 贵州省建设厅官网网站心雨在线高端网站建设创新
  • 门户网站建设构架郑州电商网站建设
  • 网站建设电话销售技巧网页源代码提取文件
  • 蓝色的网站为什么选择做汉服网站
  • 做代理网站怎么提交网站
  • 建立主题网站的知识点2018做网站的软件
  • 房地产公司网站建设pptwordpress 信息分析
  • 天猫网站设计东营网格通二维码
  • 如何搜网站去黄山旅游攻略和费用
  • 小型网站建设如何做网站浏览pdf
  • 电子商务网站建设及其相关法律问题网站建设需要哪些资料
  • 院系网站建设具体要求网站品牌建设功能
  • 网站改版的费用工信部网站备案变更
  • 网站上做镜像是什么意思以个人名义做地方门户网站
  • 国外做兼职的网站设计师一般是什么学历
  • 二手车 网站开发钢铁网站建设
  • 免费响应式模板网站上海app系统开发