当前位置: 首页 > news >正文

李沧做网站公司/阿里指数查询手机版

李沧做网站公司,阿里指数查询手机版,自适应网站和响应式网站的区别,豪华大气的旅行社网站源码今天更新动态规划路径问题1,后续会继续更新其他有关动态规划的问题!动态规划的路径问题,顾名思义,就是和路径相关的问题。当然,我们是从最简单的找路径开始! 动态规划的使用方法: 1.确定状态并…

今天更新动态规划路径问题1,后续会继续更新其他有关动态规划的问题!动态规划的路径问题,顾名思义,就是和路径相关的问题。当然,我们是从最简单的找路径开始!

  • 动态规划的使用方法:
    1.确定状态并定义状态数组:(i,j)代表什么意思?dp[i][j]又是什么意思?
    2.确定状态转移方程,即递推公式
    3.确定边界条件并初始化
    4.确定遍历顺序
    5.状态转移
    6.输出结果

在这里插入图片描述

文章目录

  • 一、LC 62 不同路径
      • 方法一:深度优先搜索
      • 方法二:动态规划(二维)
      • 方法三:动态规划(一维)
      • 方法四:排列组合
  • 二、LC 63 不同路径II
      • 方法一:动态规划(二维)
      • 方法二:动态规划(一维)
      • 方法三:记忆化搜索
  • 三、LC 64 最小路径和
      • 方法一:动态规划(二维)
      • 方法二:动态规划(一维)


一、LC 62 不同路径

LC 62 不同路径
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?
在这里插入图片描述


方法一:深度优先搜索

代码如下:

class Solution {
private:int dfs(int m,int n,int i,int j){//行或列有至少一个越界if(i>m||j>n) return 0;//到达终点(在竖直方向达到m,水平方向达到n,也即坐标达到(m,n))if(i==m && j==n) return 1;//递归搜索(左子树和右子树)return dfs(m,n,i+1,j)+dfs(m,n,i,j+1);}
public:int uniquePaths(int m, int n) {//从根节点开始遍历int cnt=dfs(m,n,1,1);return cnt;}
};

方法二:动态规划(二维)

代码如下:

/*动态规划的使用方法:
1.确定状态并定义状态数组:(i,j)代表什么意思?dp[i][j]又是什么意思?
2.确定状态转移方程,即递推公式
3.确定边界条件并初始化
4.确定遍历顺序
5.状态转移
6.输出结果
*/
class Solution {public:int uniquePaths(int m, int n) {//定义一个状态数组,用来存方法数      int dp[101][101]={0};//初始化状态数组for(int i=0;i<m;i++){dp[i][0]=1;}for(int j=0;j<n;j++){dp[0][j]=1;}//遍历for(int i=1;i<m;i++){for(int j=1;j<n;j++){//状态转移dp[i][j]=dp[i][j-1]+dp[i-1][j];}}//返回结果return dp[m-1][n-1];}
};

方法三:动态规划(一维)

代码如下:

class Solution {
public:int uniquePaths(int m, int n) {//定义一维状态数组  int dp[101]={0};//初始化数组值为1,即相对于二维数组第一行全是1for(int i=0;i<n;i++){dp[i]=1;}//遍历for(int i=1;i<m;i++){for(int j=1;j<n;j++){//状态转移:dp[j]指的是上一行的j,dp[j-1]指的是当前行左边的j;//每次状态转移都相当于先将上一行的运算拷贝过来,再加上从左面来的方案数dp[j]=dp[j-1]+dp[j];}}return dp[n-1];}
};

方法四:排列组合

代码如下:

class Solution {
public:int uniquePaths(int m, int n) {long long numerator = 1; // 初始化分子int denominator = m - 1; // 初始化分母int count = m - 1;//定义分子的乘积项的个数int t = m + n - 2;//定义分子的最大乘积项while (count--) {//分子累乘count项numerator *= (t--);while (denominator != 0 && numerator % denominator == 0) {//约分(也即除以公因数)numerator /= denominator;//约去一个公因数denominator--;}}return numerator;}
};

二、LC 63 不同路径II

LC 63 不同路径II
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。
在这里插入图片描述



方法一:动态规划(二维)

代码如下:

 class Solution {
public:int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {//求出二维动态数组的行数int m=obstacleGrid.size();//求出二维动态数组的列数int n=obstacleGrid[0].size();//定义状态数组int dp[101][101]={0};//边界判断if(obstacleGrid[0][0]==1 || obstacleGrid[m-1][n-1]==1) return 0;//初始化状态数组dp[0][0]=1;//遍历for(int i=0;i<m;i++){for(int j=0;j<n;j++){//如果是障碍物,则此路不通,路径数归零if(obstacleGrid[i][j]==1){dp[i][j]=0;continue;}//状态转移,此处和上面的一样if(i>0 && j>0) dp[i][j]=dp[i-1][j]+dp[i][j-1];else if(i>0) dp[i][j]=dp[i-1][j];else if(j>0) dp[i][j]=dp[i][j-1];//也可以这样写
/*if(obstacleGrid[i][j]==0){//状态转移,此处和上面的一样if(i>0 && j>0) dp[i][j]=dp[i-1][j]+dp[i][j-1];else if(i>0) dp[i][j]=dp[i-1][j];else if(j>0) dp[i][j]=dp[i][j-1];}}else continue;
*/}}return dp[m-1][n-1];}
};

方法二:动态规划(一维)

代码如下:

class Solution {
public:int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {if (obstacleGrid[0][0] == 1)return 0;vector<int> dp(obstacleGrid[0].size(),0);//初始化一维状态数组(第一行)for (int j = 0; j < dp.size() && obstacleGrid[0][j] == 0 ; ++j)if (j == 0)dp[j] = 1;elsedp[j] = dp[j-1];//for (int i = 1; i < obstacleGrid.size(); ++i)//行for (int j = 0; j < dp.size(); ++j){//列if (obstacleGrid[i][j] == 1)dp[j] = 0;else if (j != 0)dp[j] = dp[j] + dp[j-1];}return dp.back();//返回最后一个状态对应值}
};

方法三:记忆化搜索

代码如下:

class Solution {
public:int m,n;vector<vector<int>>memo;vector<pair<int,int>>dir{{0,1},{1,0}};int uniquePathsWithObstacles(vector<vector<int>>& ob) {n=ob.size();m=ob[0].size();if(ob[0][0]==1||ob[n-1][m-1]==1){return 0;}memo.resize(n,vector<int>(m,0));return dfs(ob,0,0);}int dfs(vector<vector<int>>&ob,int i,int j){if(memo[i][j]!=0){return memo[i][j];}if(i==n-1&&j==m-1){memo[i][j]=1;return 1;}int cur=0;for(auto &d:dir){int x=i+d.first;int y=j+d.second;if(x>=0&&x<n&&y>=0&&y<m&&ob[x][y]==0){cur+=dfs(ob,x,y);}}memo[i][j]=cur;return memo[i][j];}
};作者:Gallant MurdockrFZ
链接:https://leetcode.cn/problems/unique-paths-ii/solutions/2466610/dfsji-yi-hua-sou-suo-by-gallant-murdockr-e882/
来源:力扣(LeetCode)

三、LC 64 最小路径和

LC 64 最小路径和
给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。
在这里插入图片描述


方法一:动态规划(二维)

代码如下:

class Solution {
public:int minPathSum(vector<vector<int>>& grid) {//定义一个二维状态数组int dp[201][201]={0};//初始化状态数组dp[0][0]=grid[0][0];//获得行数和列数int m=grid.size();int n=grid[0].size();for(int i=0;i<m;i++){for(int j=0;j<n;j++){//正常情况if(i>0 && j>0){dp[i][j]=min(dp[i-1][j],dp[i][j-1])+grid[i][j];}//边界条件else if(i>0) dp[i][j]=dp[i-1][j]+grid[i][j];else if(j>0) dp[i][j]=dp[i][j-1]+grid[i][j];}}return dp[m-1][n-1];}
};

方法二:动态规划(一维)

代码如下:

class Solution {
public:int minPathSum(vector<vector<int>>& grid) {//获取行数和列数int m=grid.size();int n=grid[0].size();//定义一维状态数组int dp[201]={0};//初始化第一行dp[0]=grid[0][0];for(int i=1;i<n;i++){dp[i]=grid[0][i]+dp[i-1];}//状态转移(配合滚动数组优化)for(int i=1;i<m;i++){for(int j=0;j<n;j++){//左边界if(j==0) dp[j]+=grid[i][j];//其他情况else dp[j]=min(dp[j-1],dp[j])+grid[i][j];}}return dp[n-1];}
};

我以前没怎么接触过动态规划,目前就是每天有空看看题,想想解题思路啥的,但愿有效果吧!
在这里插入图片描述

http://www.bjxfkj.com.cn/article/618.html

相关文章:

  • 中山网站推广优化/产品营销策划方案怎么做
  • 有创意的网站开发/百度服务中心官网
  • 站酷设计网站官网网址/sem是什么意思啊
  • 北京比较好的互联网公司/佛山seo培训
  • html5炫酷的网站/不付费免费网站
  • 网站 前端/seo引擎优化是什
  • 淘宝网站后台怎么做/企业培训心得
  • 人跟狗做网站/做网站设计哪里有
  • 济南营销型网站建设公司/广州网站建设
  • 想给大学做网站/网站seo推广排名
  • 网站设计考虑因素/武汉网站seo
  • 党团建设网站/百度seo原理
  • 天津专业智能建站/大连百度关键词排名
  • 网站建设包装策略/百度推广竞价排名
  • 重庆网站建设哪家公司好/百度推广后台登陆入口
  • 微博seo排名优化/什么公司适合做seo优化
  • Nginx做跳转到其他网站/福州关键词搜索排名
  • 网站建设群号/自己建网站详细流程
  • 什么网站框架/百度发广告怎么发
  • 网站标题logo修改代码/上海sem
  • 手机端公司网站怎么做/网站建站模板
  • 网站建设官网免费模板/推广技术
  • asp.net 网站管理工具/seo推广案例
  • 机械设备网站建设/高端网站公司
  • 企业网站建设首选智投未来1/百度网址链接是多少
  • 国基建设集团有限公司网站/郑州百度网站快速优化
  • 出售东西的网站怎么做/东莞seo排名公司
  • 迈网科技 官方网站/旺道seo优化软件怎么用
  • 建站公司还有前途吗/神马移动排名优化
  • 学校门户网站建设的意义/免费制作网站app